Layer 1 copy

Sift Science is quick, elegant, and easy to act on.

Eric BrightVice President of E-Commerce

Overview

  • Online community for news and classified ads

  • The KSL Marketplace has 235 million page views per month

Challenge

  • Just 1 analyst managing a 75-80% fraud rate

  • Other solutions were slow to integrate and inaccurate, requiring more manual review

Solution

  • Integrated with Sift Science in less than 6 weeks

  • Utilized Sift Science to automate order processing

Results

  • Improved their manual review efficiency by 5x

  • Reduced the hours devoted to fraud management by 80%

Overview

Creating a local online community

KSL started off as a television company within Deseret Management Corporation, gaining affiliation with NBC in the 1990s. As part of the overall brand, KSL Classifieds was built in the late 1990s to offer Utah residents a local online classifieds platform to complement the community news product. In 2009, Deseret Digital Media was formed to separate digital properties from traditional radio and TV media properties. As part of this move, the DDM Marketplace business unit (within which KSL Marketplace resides) was created to further distinguish local commerce marketplace entities from the online media entities. So far, the move from traditional news agency to online and digital platform has been nothing short of successful: Utah is the only online classifieds market in the country not dominated by Craigslist, thanks to KSL’s Marketplace.

The Marketplace currently sees over 235 million page views per month and is growing rapidly as KSL aspires to become a national brand. Unfortunately, with all of the success and attention, KSL’s classifieds platform also became a popular target for fraudsters. In response, they hired Eric Bright as Vice President of E-commerce and charged him with not only growing revenue, but also stamping out KSL’s fraud challenges.

Challenge

Separating good users from the bad

KSL.com, like any classifieds marketplace, is a user-driven platform of both buyers and sellers, making trust a key ingredient to success. And with a growing percentage of fraudulent postings, KSL was suffering from an existential problem. Bad users were scamming legitimate users from all sides: publishing fake listings, taking over legitimate customer accounts, and running scams from hijacked accounts. Malicious users were also harassing the sellers of real listings, trying to scam them out of their goods and services.

The main challenge Eric faced was not only finding and eliminating existing fraud, but also blocking bad users as they tried to re-access the site after one device or account was banned. KSL needed the ability to auto-ban bad users and repeat offenders. Fighting an imposing fraud rate of 75-80% in some of the more popular sections of the site, KSL’s sole fraud analyst wasn’t able to keep up with the demands placed on their internal fraud tools and manual review process – so the team brought in a traditional fraud management vendor.

After two years of struggle, that fraud solution still wasn’t fully in place. KSL’s fraud analyst had to review every order to train the system and the solution was slow to integrate. After finally getting the product online, KSL discovered that not only was this solution inaccurate and ludicrously expensive, but it also wasn’t scaling. Instead of adapting to KSL’s needs, the vendor recommended the Marketplace team hire five more fraud analysts to overcome the solution’s deficiencies. After this painful experience, KSL was ready for a powerful and accurate solution that could drive automation and reduce (not increase) their investment in manual review.

Solution

Accuracy and automation

Hiring five additional people just to review fraud is expensive, so Eric started evaluating Sift Science’s capabilities as an alternative. He found that trialing the Sift Science solution was easy; the full integration took just six weeks and they started to see results immediately. With just a few weeks of labeling, the KSL team trained their customized model to be so accurate that they could confidently rely on Sift Score ranges to automatically approve, reject, and review transactions. Sift Science’s accuracy in pinpointing fraudsters allowed KSL to identify and shut down fraud faster than ever before. That meant the KSL team could focus their energies on the truly suspicious users, keeping good customers happy with quick approvals.

“We benefitted from Sift Science from week one, and were able to integrate all properties in 6 weeks.”

Results

Visualizing fraud to find it fast

Before Sift Science, KSL’s average manual review time was 5x longer than it is today. By moving to Sift Science, KSL estimates their total “cost to sort” – the man-hours required to review suspicious orders – has dropped nearly 80%. The flexibility and agility of the Sift Science solution allows KSL to quickly and efficiently auto-reject users and any connected fraudulent accounts. Eric’s team relies heavily on Sift Science’s Network Visualization, Connected Users, and Formulas capabilities, which give them the ability to easily and automatically find who to ban from their site. In one instance the KSL team caught a single user who operated thousands of fraudulent accounts, all because Sift Science linked the “unique” accounts by unveiling shared attributes and intuitively displaying this fraud network using advanced data visualization techniques.. Now, their fraud team is proactive and agile. Through Sift Science’s quick and intuitive interface, KSL has been able to distribute fraud monitoring responsibilities across multiple existing team members to provide near round the clock fraud coverage without adding headcount.

Sift Science is now integrated with and protecting all of KSL’s sites, working in real time to detect malicious users. Where these sites were once bogged down with spammers and scammers, their loyal user base has noticed a shift in the numbers; fraud is down 33%-54% – depending on the site – and the community can once again enjoy this platform for real exchange and conversation. KSL trusts Sift Science so much that they use Sift Scores to auto-act on orders, processing hundreds more per day and allowing Eric and his team to focus on growth, not fraud.

“There is no way we could do what we do without Sift Science.”